



National Association of Regulatory Utility Commissioners



# **U.S. Case Studies**

Technical Workshop on Evaluating Demand Forecasts and Least-Cost Expansion Plans

Lusaka, Zambia

Douglas Gotham January 25, 2023







# State Utility Forecasting Group (SUFG)

- SUFG is a university-based research group that specializes in economic and policy analysis for the electric utility industry
- SUFG has been working with the Indiana Utility Regulatory Commission (IURC) since 1985
- SUFG provides long-term (20-year) forecasts of electricity usage, prices, and resource needs for the state of Indiana
- SUFG has been providing long-term (20-year) forecasts to the local wholesale market and transmission operator (MISO – Midcontinent Independent System Operator) since 2014







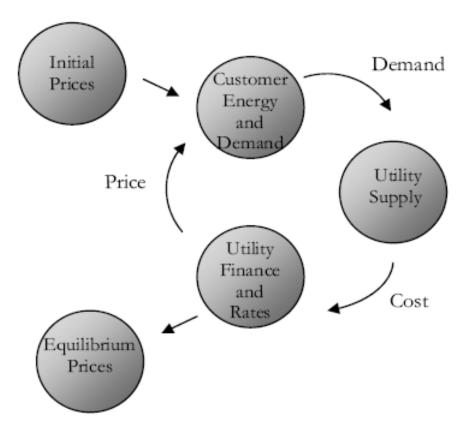








# SUFG INDIANA FORECASTING MODELING SYSTEM








# **SUFG Indiana Forecasting Modeling System**

- Consists of 3 types of models
  - Load forecasting models
  - A production costing and resource expansion model
  - Utility finance and rates models









### **Indiana Forecasting Models**

- 3 customer sector-specific models for each of the 5 investor-owned utilities (IOUs)
  - Residential
  - Commercial (business)
  - Industrial (manufacturing)
- A single econometric model for each of the 3 major not-for-profit (NFP) utilities







# **IOU Residential Models**

- For each IOU, we use a bottom-up end-use model
- 3 building types
  - Single family, multiple family, mobile
- 3 fuel types
  - Electricity, natural gas, fuel oil
- 10 end uses per building type
  - Space heat, water heat, air conditioning, refrigeration, freezing, cooking, dishwashing, clothes drying, lighting, miscellaneous







# **SUFG Residential End-Use Models**

- For each end use/building type combination there is an initial stock of equipment
- Initial stock is separated by age (vintage) and efficiency
- Additional stock for next year is determined by economic drivers
- Some existing stock will be replaced due to failure or early replacement
- Older vintages are more likely to be replaced







# **Major Drivers for Residential Models**

- Demographic projections
- Real personal income projections
- Electricity price projections from SUFG rates models
- Natural gas price projections







# **IOU Commercial Models**

- For each IOU, we use a bottom-up end-use model
- 21 building types
  - Office, grocery, etc.
- 3 fuel types
  - Electricity, natural gas, fuel oil
- 10 end uses per building type
  - Space heating, water heating, air conditioning, ventilation, refrigeration, cooking, interior lighting, exterior lighting, equipment, other







### **SUFG Commercial End-Use Models**

 Structure is similar to the residential end-use model, except it is modeled based on the amount of floor space to account for size differences among commercial buildings (residential model is based on the number of dwellings)







# **Major Drivers for Commercial Models**

- Non-manufacturing employment
- Demographics
- Electricity price projections from SUFG rates models
- Natural gas price projections







# **IOU Industrial Models**

- For each IOU, SUFG uses a top-down econometric model for each of 15 industry types
  - Food; lumber & wood products; furniture & fixtures; paper; printing & publishing; chemicals; rubber & plastics; stone, clay, & glass; primary metals; fabricated metal; industrial machinery; electronics; transportation equipment; instruments; miscellaneous
- Given a projection of the output of each industry type, the model examines the tradeoff of different potential inputs to find the least-cost option







# **Major Drivers for Industrial Models**

- Manufacturing employment CEMR
- Manufacturing gross state product by industry type
- Electricity price projections from SUFG rates models
- Natural gas, petroleum, and coal price projections







# **NFP Econometric Models**

- SUFG constructed unique econometric models for each of the 3 major NFP utilities
- Drivers
  - Population
  - Electricity price projections from SUFG rates models
  - Weather







### **New Industrial Forecasting Models**

- SUFG is working on developing new econometric models for the IOUs
- Major industries (primary metals, transportation equipment) will be modeled individually, while other industries will be grouped together (durable goods, non-durable goods)







# LOAD FORECASTING BY INDIANA UTILITIES







# Forecasting Approaches by Indiana Utilities

- Each utility is responsible for developing its own forecast, which it uses in its integrated resource planning process
- A variety of approaches are used, including
  - Econometric, which is a top-down method
  - Statistically Adjusted End-Use (SAE), which is a hybrid of bottom-up and top-down
  - Time series approaches, like Autoregressive Integrated Moving Average (ARIMA), which do not use explanatory variables
  - Analyst judgment







# IOUs

- AES Indiana, Duke Energy, and Vectren use SAE models for residential and commercial, econometric for industrial
- Indiana Michigan Power uses ARIMA for the short-term and combination of SAE (residential/commercial) and econometric (industrial) for longterm
- NIPSCO uses econometric models (combination of forecasts of number of customers and forecasts of usage per customer) for all sectors

# NFPs

- Hoosier Energy uses econometric models for residential; commercial and industrial that are largely based on judgment
- Indiana Municipal Power Agency uses an econometric model at the total system level, and does not break down by customer class
- Wabash Valley Power Association uses SAE models at an individual member level, with adjustments for large customers















# **Utility Integrated Resource Plans (IRPs)**

- Each utility is required to file an IRP at least once in a 3-year period
- IRPs include the load forecast, scenario and risk analysis, and preferred mix of resources for the future
- Resource mix include supply-side (generators and purchases from other suppliers) and demand-side (utility-sponsored efficiency programs)
- The IURC does not require specific approaches or models







### **IRP Stakeholder Meetings**

- The 5 IOUs are required to hold a series of meetings with stakeholders (customers, government employees, public-interest groups) to explain their process and assumptions and receive feedback from the stakeholders
- The NFP utilities are exempt from this requirement







# **IURC** Review

- After the utility files its IRP, commission staff review it and take comments from stakeholders
- The Director of the Research Policy & Planning Division prepares a draft report detailing their findings
  - Includes any concerns about methodology and assumptions
- The utility and stakeholders are given time to respond to the draft report
- After taking those responses into account, the final Director's Report is released
- The Commission does not formally approve or deny the utility's IRP







# **IURC Review Considerations**

- Continual improvement in all aspects of plan development
  - Data
  - Process
  - Modeling
- Risk analysis and scenarios
  - Including low probability, high impact
- Invite outside critique
- Flexibility in the face of change







# **IURC Review Considerations (continued)**

- Coordination at all levels
  - Generation
  - Transmission (including with neighboring regions)
  - Distribution
- Other metrics besides least-cost
  - Societal costs and benefits
- Prudence and security
  - Once the commission approves resources, it would be inappropriate to penalize the utility if it continues to use best practices







# **IURC IRP Site**

- Contains both draft and final Director's reports going back to 2013
- Contains individual utility IRPs going back to 2011
- Could be helpful in seeing what the IURC looks for when reviewing utility load forecasts and resource plans

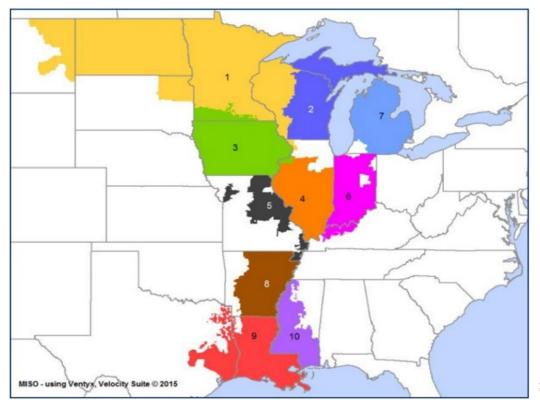
https://www.in.gov/iurc/energy-division/electricity-industry/integrated-resource-plans/

# FORECASTING FOR THE MID-CONTINENT INDEPENDENT SYSTEM OPERATOR (MISO)














### **SUFG MISO Forecasts**

• SUFG provides 20-year load forecasts for MISO, which uses them as an input to its transmission planning process



Source: MISO 2018







# **MISO Forecasting Models**

- For transparency, MISO wants models based on publicly available data
  - This makes it difficult to use a bottom-up approach
- SUFG develops econometric models for each of the 15 states in the MISO region
  - Each model uses a linear formulation

$$Y = \beta + \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 + \dots$$

 The state forecasts are allocated to 10 local resource zones, which are then summed to the total system level







### **Blending with Other Forecasts**

- MISO also gets forecasts provided by some of the individual utilities, and has SUFG blend those with ours
- The SUFG forecast was blended with a bottom-up forecast in the first 5 years to better capture the effects of government codes and standards
  - Uncertainty over future codes and standards means the accuracy of the bottom-up models is largely unknown in the long-term
- This blended forecast was then used to account for the utilities that did not provide a forecast







# **MISO Forecasting Methodology Whitepaper**

- A few years ago, MISO published a review of forecasting methodologies
- According to the paper, the qualities of a good forecasting system are
  - Understandability
  - Credibility
  - Accuracy
  - Reasonable cost
  - Maintainability
  - Adaptability







# **MISO Forecasting Methodology Whitepaper**

- "Acceptable"
  - End-use
  - Econometric
  - Hybrid

- "Unacceptable"
  - Time trend
  - Autoregressive
  - Informed opinion

https://cdn.misoenergy.org/Peak%20Forecasting%20Methodology%20Review%20Whitepaper173766.pdf







# Thank You

#### Doug Gotham

gotham@purdue.edu

https://www.purdue.edu/discoverypark/sufg/

